ANALISIS REAL 1

Himpunan

Proposisi: Kalimat deklaratif yang bernilai benar atau salah, tetapi tidak dapat sekaligu keduanya.

Aksioma : Proposisi yang diasumsikan benar. Aksioma tidak memerlukan pembuktian kebenaran

lagi.

Teorema : Proposisi yang sudah terbukti benar. Bentuk khusus dari teorema adalah lemma dan

corolarry.

Lemma: Teorema sederhana yang digunakan dalam pembuktian teorema lain.

Corolarry(akibat): Teorema yang dapat dibentuk langsung dari teorema yang telah dibuktikan.

Himpunan(set): Kumpulan objek-objek yang berbeda.

Simbol-simbol baku:

 \mathbb{N} = Himpunan bilangan asli.

 \mathbb{Z} = Himpunan bilangan bulat.

 \mathbb{R} = Himpunan bilangan real.

 \mathbb{Q} = Himpunan bilangan rasional.

 \mathbb{C} = Himpunan bilangan kompleks.

Notasi pembentuk himpunan : $\{x \mid \text{ syarat yang harus dipenuhi oleh } x\}$.

Tanda '|' dibaca dimana atau sedemikian sehingga.

Algoritma: urutan logis langkah-langkah penyelesaian masalah yang disusun sistematis.

Kuantor Universal : $\forall x$ (untuk setiap atau untuk semua)

Kuantor Eksistensial : $\exists x$ (ada atau beberapa)

Negasi/ingkaran:

$$\sim [\forall x, p(x)] = \exists x, \sim p(x)$$

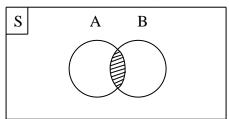
$$\sim [\exists x, p(x)] = \forall x, \sim p(x)$$

Bilangan Asli (N)
Bilangan Bulat (Z)
Bilangan Rasional (Q)
Bilangan Real (R)
Bilangan Kompleks (C)

Definisi 1. Dua himpunan dikatakan sama jika mereka memuat elemen-elemen yang sama. Jika himpunan A dan B sama, maka dinotasikan dengan A=B.

Operasi pada Himpunan:

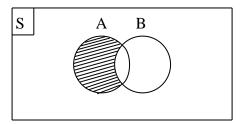
1. A irisan B $(A \cap B)$



2. A gabungan B $(A \cup B)$



3. A minus B (A - B)atau $(A \setminus B)$



Teorema 1. Jika A, B, C adalah sebarang himpunan, maka

- 1. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 2. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Bukti

- 1. Jika x di dalam $A \setminus (B \cup C)$ maka x di dalam A tetapi tidak di $(B \cup C)$. Akibatnya x di A tetapi tidak di B dan tidak di C. Berarti $x \in A \setminus B$ dan $x \in A \setminus C$. Jadi $x \in (A \setminus B) \cap (A \setminus C)$.
- 2. Jika x di dalam $A \setminus (B \cap C)$ maka x di dalam A tetapi tidak di $(B \cap C)$. Bisa juga ada x di A yang juga ada di C tetapi tidak di B. Selanjutnya, bisa juga ada x di A yang juga ada di B tetapi tidak di C. Berarti $x \in A \setminus B$ atau $x \in A \setminus C$. Jadi $x \in (A \setminus B) \cup (A \setminus C)$.

Contoh

1. Diberikan sebarang himpunan A dan B, tunjukkan bahwa himpunan $A \cap B$ dan $A \setminus B$ adalah saling asing!

Bukti

Jika x ada di dalam $A \cap B$, maka x di dalam A dan di dalam B. Untuk x yang ada di dalam A tetapi tidak ada di dalam B berarti tidak berada di dalam $A \cap B$. Jika x ada di dalam $A \setminus B$ maka x di dalam A tetapi tidak ada di dalam B. Karena tidak ada x di dalam $A \cap B$ dan juga di dalam $A \setminus B$ maka $A \cap B$ dan $A \setminus B$ adalah saling asing.

Definisi 2. Himpunan A dan B dikatakan ekivalen (mempunyai kardinalitas yang sama) jika terdapat suatu fungsi korespondensi 1-1 dari A kepada B, ditulis $A \sim B$.

Definisi 3. Diberikan suatu himpunan sebarang A, maka:

- 1. A dikatakan berhingga jika $A \sim J_n$
- 2. A dikatakan tak berhingga jika A bukan himpunan berhingga
- 3. A dikatakan terbilang jika $A \sim \mathbb{N}$
- 4. A dikatakan tak terbilang jika A bukan himpunan yang berhingga atau yang terbilang

Contoh

- 1. Buktikan himpunan bilangan asli kurang dari 100 adalah himpunan berhingga!
- 2. Buktikan himpunan bilangan real R himpunan tak berhingga!
- 3. Buktikan himpunan $C = \{0, 1, 2, 3, ...\}$ adalah himpunan terbilang!
- 4. Buktikan bahwa himpunan semua bilangan bulat!
- 5. Buktikan himpunan semua bilangan rasional Q terbilang!

Jawab

1. Himpunan bilangan asli kurang dari 100 yaitu

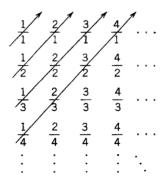
$$A = \{1, 2, 3, \dots, 99\}.$$

Terlihat himpunan A berhingga.

- 2. Karena tidak ada batas atas dari bilangan real \mathbb{R} .
- 3. Dibentuk fungsi $f: \mathbb{N} \to C$ dengan f(n) = n 1 untuk setiap $n \in \mathbb{N}$.
- 4. Dibentuk fungsi $f: \mathbb{N} \to \mathbb{Z}$ dengan

$$f(x) = \begin{cases} \frac{n}{2}, & \text{untuk } n \text{ genap} \\ \frac{-(n-1)}{2}, & \text{untuk } n \text{ ganjil} \end{cases}$$

5. Terbilang, karena bisa dibuat bentuk seperti ini



Fungsi

Definisi 4. Diberikan fungsi $f: A \rightarrow B$, maka:

- 1. Fungsi f dikatakan injektif (satu-satu) jika untuk setiap $x_1 \neq x_2$, maka $f(x_1) \neq f(x_2)$.
- 2. Fungsi f dikatakan surjektif (pada/onto) jika f(A) = B.
- 3. Fungsi f dukatakan bijektif jika f fungsi injektif dan surjektif.

Cara membuktikan:

- 1. Fungsi Injektif: untuk setiap x_1, x_2 di A, jika $f(x_1) = f(x_2)$, maka $x_1 = x_2$.
- 2. Fungsi Surjektif : untuk setiap $b \in B$ terdapat paling sedikit satu $x \in A$ sedemikian sehingga f(x) = b.

Contoh

- 1. Diberikan $f(x) = \frac{x}{x-1}$ dimana $x \in \mathbb{R}$, $x \neq 1$. Buktikan bahwa f(x) bijektif!
- 2. Apakah fungsi $f: \mathbb{R} \to \mathbb{R}$ dengan $f(x) = x^2$ merupakan fungsi surjektif? Berikan alasan!
- 3. Berikan contoh dua fungsi f dan g pada \mathbb{R} ke \mathbb{R} sehingga $f \neq g$ tetapi $f \circ g = g \circ f!$

Bukti

1. Pertama akan dibuktikan f(x) injektif. Anggap $f(x_1) = f(x_2)$, sehingga

$$\frac{x_1}{x_1 - 1} = \frac{x_2}{x_2 - 1}$$

$$x_1(x_2 - 1) = x_2(x_1 - 1)$$

$$x_1x_2 - x_1 = x_1x_2 - x_2$$

$$x_1 = x_2$$

(Terbukti)

Kedua akan dibuktikan f(x) surjektif. Nilai fungsi f ditulis $y = \frac{x}{x-1}$, $x \ne 1$ dan dapat ditulis menjadi

$$y(x-1) = x$$
$$yx - 1 = x$$

$$xy - x = 1$$

$$x(y - 1) = 1$$

$$x = \frac{1}{(y - 1)}, y \neq 1$$

Karena semua nilai $y \in \mathbb{R}$, $y \neq 1$ merupakan hasil dari f(x) maka terbukti f(x) surjektif.

2. Tidak. Karena ada $y < 0 \in \mathbb{R}$ dimana $f(x) \neq y$.

3.
$$f(x) = 3x + 5$$
$$g(x) = \frac{4x + 5}{2}$$

Latihan Soal

- 1. Diberikan f(x) = 2x dimana $f: \mathbb{R} \to \mathbb{R}$. Buktikan bahwa f(x) bijektif!
- 2. Diberikan f(x) = 5x + 2 dimana $f: \mathbb{R} \to \mathbb{R}$. Buktikan bahwa f(x) bijektif!

Induksi Matematika

Cara membuktikan menggunakan induksi matematika:

- 1. n = 1 Benar
- 2. Misal n = k Benar Maka n = k + 1 Benar

Contoh

1. Buktikan bahwa

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Untuk setiap $n \ge 1$!

Jawab

•
$$n = 1$$

 $1 = \frac{1(1+1)}{2}$
 $1 = \frac{1(2)}{2}$
 $1 = 1 \text{ (Benar)}$

•
$$n = k$$

 $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$ (Benar)
 $n = k + 1$

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{(k+1)((k+1)+1)}{2}$$
$$\frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$
$$\frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$
$$\frac{(k+1)(k+2)}{2} = \frac{(k+1)(k+2)}{2}$$
(Benar)

(Terbukti)

Latihan Soal

1. Buktikan bahwa

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

untuk setiap $n \in \mathbb{N}$!

2. Buktikan melalui induksi matematika

$$1(2) + 2(3) + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

untuk $n \ge 1!$

Bilangan Real

Definisi 5. Diberikan himpunan terurut S dengan urutan \leq dan $E \subset S$. Himpunan E dikatakan terbatas ke atas jika terdapat suatu elemen $m \in S$ sehingga untuk setiap $x \in E$ berlaku $x \leq m$. Elemen m disebut batas atas himpunan E.

Definisi 6. Diberikan himpunan terurut S dengan urutan \leq dan $E \subset S$. Himpunan E dikatakan terbatas ke bawah jika terdapat suatu elemen $n \in S$ sehingga untuk setiap $x \in E$ berlaku $x \geq n$. Elemen n disebut batas bawah himpunan E.

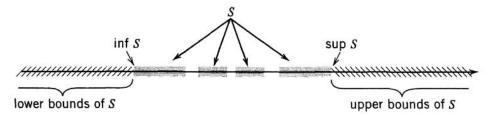
Definisi 7. Diberikan himpunan terurut S dengan urutan \leq , himpunan $E \subset S$ terbatas ke atas. Suatu elemen $a \in S$ dikatakan **batas atas terkecil** (supremum) himpunan E jika memenuhi ketentuan berikut:

- a. a batas atas himpunan E.
- b. Jika p batas atas himpunan E, maka $a \le p$

Definisi 8. Diberikan himpunan terurut S dengan urutan \leq , himpunan $E \subset S$ terbatas ke bawah. Suatu elemen $b \in S$ dikatakan **batas bawah terbesar** (infimum) himpunan E jika memenuhi ketentuan berikut:

- a. b batas bawah himpunan E.
- b. Jika q batas bawah himpunan E, maka $b \ge q$

Berikut gambar nilai supremum dan infimum:



Contoh

- 1. Tentukan batas atas $E = \{1, 2, -1, 4, 7\}!$
- 2. Tentukan Supremum dan Infimum dari himpunan $E = \{1, 2, -1, 4, 7\}!$

Jawab

- 1. Batas atas *E* adalah $x \ge 7$.
- 2. Sup $E = \{7\}$ Inf $E = \{-1\}$

Latihan Soal

- 1. Tentukan batas atas dan bawah $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}!$
- 2. Apakah himpunan bilangan asli N terbatas?
- 3. Misalkan $A = \{x \in \mathbb{R} \mid x^2 x 2 \ge 0\}$ dan $B = \{x \in \mathbb{R} \mid x^2 4 < 0\}$. Tentukan:
 - a. $A \cap B$
 - b. $A \cup B$
 - c. A B
- 4. Misal $A = \{a, b, c, d\}$ dan $B = \{1,2,3,4\}$. Selidiki apakah himpunan pasangan berurutan berikut ini merupakan fungsi atau bukan:

$$h = \{(a, 2), (b, 2), (c, 3), (d, 1), (a, 1)\}!$$

- 5. Misalkan $f(x) = x^2$ dimana $f: \mathbb{R} \to \mathbb{R}$. Apakah fungsi f injektif? Jelaskan!
- 6. Buktikan dengan induksi matematika bahwa $n^3 + 2n$ adalah kelipatan 3 untuk semua $n \ge 1$!
- 7. Tentukan Supremum dan Infimum dari himpunan $E = \{\frac{1}{n}, n \in \mathbb{N}\}$! Tentukan juga apakah Supremum dan Infimum berada di dalam E?
- 8. Tentukan Supremum dan Infimum dari himpunan $S = \{x^2 < 9, x \in \mathbb{R}\}!$
- 9. Misalkan $A = \left\{ \frac{1}{2} + \dots + \frac{1}{2^n} | n \in \mathbb{N} \right\}$. Buktikan bahwa sup A = 1!

Teorema 2. Jika $a \in \mathbb{R}$ dan $0 \le a < \varepsilon$ untuk setiap $\varepsilon > 0$, maka a = 0.

Bukti

Anggap a > 0. Dapat diambil $\varepsilon_0 = \frac{1}{2}a$ dimana $0 < \varepsilon_0 < a$. Hal ini kontradiksi karena seharusnya $a < \varepsilon$ untuk setiap $\varepsilon > 0$. Maka haruslah a = 0.

Latihan Soal

- 1. Tentukan semua bilangan real yang memenuhi ketaksamaan di bawah ini:
 - a. $\frac{1}{x} < x$
 - b. $\frac{1}{x} < x^2$
- 2. Buktikan bahwa ketaksamaan

$$2^n > 2n + 1$$

benar untuk semua bilangan asli $n \ge 3!$

- 3. Buktikan (Ketaksamaan Bernoulli) jika x > -1 maka $(1+x)^n \ge 1 + nx$ untuk semua $n \in \mathbb{N}!$
- 4. Tentukan apakah fungsi $f(x) = 3x^2 1$ injektif?
- 5. Tentukan apakah fungsi g(x) = 2x surjektif?
- 6. Tentukan apakah fungsi $h(x) = x^3$ bijektif?
- 7. Tentukan Supremum dan Infimum dari himpunan-himpunan berikut:
 - a. $S = \{1, 2, 3, 0, 4, 5\}$
 - b. $T = (1,3) \cup [4,5) \cup [7,9]$
 - c. $M = \{-1 < x \le 3, x \in \mathbb{R}\}\$
 - d. $E = \{x^2 \le 4, x \in \mathbb{R}\}$
- 8. Tentukan himpunan E dimana $\sup E = \inf E$!
- 9. Tentukan Supremum dan Infimum dari himpunan-himpunan berikut
 - a. $A = \{\sqrt{n}, n \in \mathbb{N}\}$
 - b. $B = \left\{ \frac{1}{n^2}, n \in \mathbb{N} \right\}$
- 10. Tentukan juga apakah Supremum dan Infimum berada di dalam himpunan tersebut?

Medan

Definisi 9. Himpunan terurut F yang dilengkapi dengan operasi penjumlahan dan perkalian disebut suatu Medan jika memenuhi:

Aksioma Penjumlahan

- J1. Jika $x, y \in F$, maka $x + y \in F$
- J2. Jika $x, y \in F$, maka x + y = y + x (komutatif)
- J3. Untuk semua $x, y, z \in F$, maka (x + y) + z = x + (y + z)
- J4. F memuat elemen 0 sehingga 0 + x = x, untuk setiap $x \in F$
- J5. Untuk setiap $x \in F$, terdapat $-x \in F$ dan x + (-x) = 0

Aksioma Perkalian

- K1. Jika $x, y \in F$, maka $xy \in F$
- K2. Untuk semua $x, y \in F$, maka xy = yx (komutatif)
- K3. Untuk semua $x, y, z \in F$, maka (xy)z = x(yz)
- K4. F memuat elemen $1 \neq 0$ sehingga 1x = x untuk setiap $x \in F$
- K5. Jika $x \neq 0 \in \mathbb{F}$, maka terdapat suatu elemen $\frac{1}{x} \in \mathbb{F}$ dan $x\left(\frac{1}{x}\right) = 1$

Hukum Distributif

Untuk setiap $x, y, z \in F$ berlaku x(y + z) = xy + xz.

Proposisi 1. Aksioma-aksioma penjumlahan mengakibatkan berlakunya pernyataan berikut:

- i Jika x + y = x + z maka y = z
- ii Jika x + y = x maka y = 0
- iii Jika x + y = 0 maka y = -x
- iv -(-x) = x

Bukti

- i y = 0 + y = (-x + x) + y = -x + (x + y) = -x + (x + z) = (-x + x) + z = 0 + z = z
- ii Karena x + y = x, maka berdasarkan (i) dapat diambil z = 0 sehingga y = 0
- iii Dengan mengambil z = -x, bersadarkan (i) diperoleh y = -x
- iv Dari (iii) jika x + y = 0 maka y = -x, karena -x + x = 0 maka x = -(-x).

Proposisi 2. Aksioma-aksioma perkalian mengakibatkan berlakunya pernyataan berikut:

- i Jika $x \neq 0$ dan xy = xz maka y = z
- ii Jika $x \neq 0$ dan xy = x maka y = 1
- iii Jika $x \neq 0$ dan xy = 1 maka $y = \frac{1}{x}$
- iv Jika $x \neq 0$ maka $1/\frac{1}{x} = x$

Bukti

i Karena $x \neq 0$ dan xy = xz, maka menurut aksioma perkalian,

$$y = y1 = y\left(x\left(\frac{1}{x}\right)\right) = (yx)\left(\frac{1}{x}\right) = (xy)\left(\frac{1}{x}\right) = (xz)\left(\frac{1}{x}\right) = (zx)\left(\frac{1}{x}\right) = z\left(x\left(\frac{1}{x}\right)\right) = z1 = z$$

- ii Karena xy = x, maka berdasarkan (i) dapat diambil z = 1 sehingga y = 1
- iii Karena $x \neq 0$ dengan mengambil $z = \frac{1}{x}$, bersadarkan (i) diperoleh $y = \frac{1}{x}$
- iv Dari (iii) jika $x \neq 0$ dan xy = 1 maka $y = \frac{1}{x}$, karena $\left(\frac{1}{x}\right)x = 1$ maka $x = 1/\frac{1}{x}$.

Proposisi 3. Untuk sebarang $x, y, z \in F$ berlaku pernyataan-pernyataan berikut:

- $i \ 0x = 0$
- ii Jika $x \neq 0$ dan $y \neq 0$ maka $xy \neq 0$
- iii (-x)y = -(xy) = x(-y)
- iv (-x)(-y) = xy

Bukti

i Menurut aksioma distributif

$$0x + 0x = (0 + 0)x = 0x$$

Menurut proposisi 1 no.(ii) didapatkan

$$0x = 0$$

- ii Disini akan dibuktikan dengan kontradiktif. Andaikan untuk $x \neq 0$, $y \neq 0$ dan xy = 0, maka $1 = \left(\frac{1}{y}\right)y = \left(\frac{1}{y}\right)1y = \left(\frac{1}{y}\right)x\left(\frac{1}{x}\right)y = \left(\frac{1}{y}\right)\left(\frac{1}{x}\right)xy = \left(\frac{1}{y}\right)\left(\frac{1}{x}\right)0 = 0$ atau 1 = 0, adalah suatu kontradiksi. Jadi pernyataan (ii) benar.
- iii Mengingat aksioma distributif, maka xy + (-x)y = (x + (-x))y = 0y = 0, sehingga menurut proposisi 1 no.(iii) (-x)y = -xy. Demikian juga xy + x(-y) = x(y + (-y)) = x0 = 0, sehingga menurut proposisi 1 no.(iii) x(-y) = -xy. Jadi terbukti (-x)y = -(xy) = x(-y).
- iv Dengan menggunakan (iii) dan proposisi 1 no.(iv) diperoleh

$$(-x)(-y) == -(x(-y)) = -(-xy) = xy$$

Definisi 10. Suatu medan F dikatakan medan terurut jika F merupakan himpunan terurut dengan sifat:

- i Jika $x, y, z \in F$ dan y < z, maka x + y < x + z
- ii Jika $x, y \in F$ dengan x > 0 dan y > 0 maka xy > 0

Jika x > 0 maka x disebut elemen positif, dan jika x < 0 maka x disebut elemen negatif.

Proposisi 4. Dalam medan terurut F berlaku pernyataan-pernyataan berikut:

- i Jika x > 0 maka -x < 0 dan sebaliknya
- ii Jika x > 0 dan y < z maka xy < xz
- iii Jika x < 0 dan y < z maka xy > xz
- iv Jika $x \neq 0$ maka $x^2 > 0$
- v Jika 0 < x < y maka $\frac{1}{y} < \frac{1}{x}$

Bukti

- i Jika x > 0 maka -x = -x + 0 < -x + x = 0, jadi -x < 0. Jika x < 0 maka -x = -x + 0 > -x + x = 0, jadi -x > 0.
- ii Karena y < z maka menurut definisi 10 no. (i) 0 = -y + y < -y + z = z y. Karena x > 0 maka menurut definisi 10 no. (ii) x(z y) > 0. Untuk xz = xz xy + xy = x(z y) + xy > 0 + xy = xy. Jadi xy < xz.
- iii Karena x < 0 maka menurut (i) -x > 0. Jadi menurut (ii) berlaku (-x)y < (-x)z. Selanjutnya berdasarkan proposisi 3 no. (iii) berlaku -(xy) < -(xz), sehingga menurut definisi 10 no. (i) berlaku 0 = xy xy < xy xz atau xy > xz.
- iv Jika $x \neq 0$, maka x > 0 atau x < 0. Untuk x > 0 maka menurut definisi 10 no. (ii) berlaku $x \cdot x = x^2 > 0$. Jika x < 0 maka menurut (i) -x > 0. Berdasarkan proposisi 3 no. (iv) bahwa (-x)(-x) = x. $x = x^2 > 0$.
- v Menurut (ii) dan proposisi 3 no. (i) berlaku pernyataan

Jika
$$y > 0$$
 dan $z \le 0$, maka $yz \le 0$

Jadi pernyataan berikut juga benar

Jika
$$yz > 0$$
 dan $y > 0$, maka $z > 0$

Karena $y\left(\frac{1}{y}\right) = 1 > 0$ dan y > 0 maka $\frac{1}{y} > 0$. Karena 0 < x < y maka $\frac{1}{x} > 0$. Karena $\frac{1}{x} > 0$ dan $\frac{1}{x} > 0$ maka menurut definisi 10 no. (ii) berlaku $\left(\frac{1}{x}\right)\left(\frac{1}{y}\right) > 0$. Dari ketaksamaan x < y diperoleh

$$\left(\frac{1}{x}\right)\left(\frac{1}{y}\right)x < \left(\frac{1}{x}\right)\left(\frac{1}{y}\right)y$$
 atau $\frac{1}{y} < \frac{1}{x}$.

Nilai Mutlak

Definisi 11. Untuk setiap $x \in \mathbb{R}$ didefinisikan fungsi nilai mutlak

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Bentuk |x| disebut nilai mutlak (absolute value) dari $x \in \mathbb{R}$ yang nilainya selalu positif.

Teorema 3. Untuk setiap $x, y \in \mathbb{R}$, berlaku:

i
$$|x| = \sqrt{x^2}$$

ii
$$-|x| \le x \le |x|$$

iii
$$|xy| = |x||y|$$

iv
$$|x + y| \le |x| + |y|$$

$$|x| - |y| \le |x - y| \operatorname{dan} |y| - |x| \le |x - y|$$

Bukti

i Jika
$$x \ge 0$$
, maka $|x|^2 = x^2$ atau $|x| = \sqrt{x^2}$. Jika $x < 0$, maka $|x|^2 = (-x)^2 = x^2$ atau $|x| = \sqrt{x^2}$.

ii Jika
$$x \ge 0$$
, maka $-|x| = -x \le x \le |x|$. Jika $x < 0$, maka $-|x| = -(-x) = x \le -x \le |x|$.

iii Dari (i) didapat
$$|xy| = \sqrt{(xy)^2} = \sqrt{x^2y^2} = \sqrt{x^2}\sqrt{y^2} = |x||y|$$

iv Dari (i)
$$|x + y|^2 = (x + y)^2 = x^2 + 2xy + y^2$$

Dari (ii)
$$\leq x^2 + y^2 + 2|xy|$$

Dari (i) dan (iii)
$$= |x|^2 + |y|^2 + 2|x||y|$$
$$= (|x| + |y|)^2$$

Atau

$$|x + y| \le |x| + |y|$$

v
$$|x| = |x - y + y| \le |x - y| + |y|$$
 atau $|x| - |y| \le |x - y|$. Dengan cara yang sama dapat dibuktikan $|y| - |x| \le |x - y|$.

Ruang Euclides

Definisi 12. Untuk setiap bilangan positif k, dibentuk himpunan pasangan terurut-k (k-tuple) dari bilangan-bilangan real.

$$\mathbb{R}^k = \left\{ \bar{x} = (x_1, x_2, \dots, x_k) | x_j \in \mathbb{R}, 1 \leq j \leq k \right\}$$

Bilangan-bilangan real x_1, x_2, \dots, x_k disebut koordinat.

Definisi 13. Untuk setiap $\bar{x} = (x_1, x_2, ..., x_k)$ di dalam \mathbb{R}^k didefinisikan fungsi $\|.\|: \mathbb{R}^k \to \mathbb{R}$, dengan

$$\|\bar{x}\| = \left(\sum_{j=1}^k x_j^2\right)^{\frac{1}{2}}$$

yang disebut Norma vektor \bar{x} . Fungsi $\|.\|$ disebut Norm.

Perluasan Sistem Bilangan Real

Definisi 14. Sistem bilangan real yang diperluas dinotasikan dengan \mathbb{R}^* . Sistem bilangan real yang diperluas didefinisikan

$$-\infty \le x^* \le +\infty$$
, untuk setiap $x^* \in \mathbb{R}^*$.

Sifat-sifat:

- i Untuk setiap bilangan real $x \in \mathbb{R}$, berlaku:
 - $x + \infty = \infty$
 - $\chi \infty = -\infty$

$$\bullet \ \frac{x}{+\infty} = \frac{x}{-\infty} = 0$$

ii Jika x > 0, maka

•
$$\chi(+\infty) = +\infty$$

•
$$\chi(-\infty) = -\infty$$

iii Jika x < 0, maka

•
$$\chi(+\infty) = -\infty$$

•
$$\chi(-\infty) = +\infty$$

The Archimedean Property

Teorema 4. (*sifat Archimedes*) Jika $x, y \in \mathbb{R}$ dan x > 0 maka terdapatlah suatu bilangan bulat positif $n \in \mathbb{N}$ sedemikian sehingga nx > y.

Bukti

Ditinjau himpunan

$$A = \{ nx \mid n \in \mathbb{N} \text{ dan } x > 0 \}$$

Anggap teorema di atas salah, maka untuk setiap $n \in \mathbb{N}$ berlaku $nx \leq y$. Dengan demikian himpunan A tidak kosong dan terbatas ke atas dengan suatu batas atas $y \in \mathbb{R}$. Karena $A \subset \mathbb{R}$ dan \mathbb{R} mempunyai sifat batas atas terkecil, maka terdapatlah $a \in \mathbb{R}$ dan $a = \sup A$. Karena a > 0 maka a - x < a dan a - x bukan batas atas dari $a = \sup A$. Ini berarti terdapat $a = \sup A$ sehingga a - x < mx, dimana $a = \sup A$ dan berlaku a < (m + 1)x. Karena $a = \sup A$ dan berlaku a < (m + 1)x. Hal ini kontradiksi dengan $a = \sup A$. Jadi pernyataan pada teorema $a = \sup A$. Jadi

Ruang Metrik

Definisi 15. Diberikan himpunan tidak kosong X. Fungsi $d: X \times X \to \mathbb{R}^+ \cup \{0\}$ disebut metrik pada X jika memenuhi aksioma-aksioma:

M1. $d(x, y) \ge 0$ untuk setiap $x, y \in X$

M2. d(x, y) = 0 jika dan hanya jika x = y

M3. d(x, y) = d(y, x) untuk setiap $x, y \in X$

M4. $d(x, y) \le d(x, z) + d(z, y)$ untuk setiap x, y dan $z \in X$.

Himpunan X yang dilengkapi dengan fungsi jarak d, disebut ruang metrik dan dinyatakan dengan (X, d).

Contoh

1. Garis bilangan real \mathbb{R} dengan fungsi jarak d(x,y) = |x-y| untuk setiap $x,y \in \mathbb{R}$ merupakan metrik.

Bukti

M1. $d(x, y) = |x - y| \ge 0$ untuk setiap $x, y \in \mathbb{R}$.

M2. (\Rightarrow) d(x, y) = |x - y| = 0, maka x = y.

 (\Leftarrow) Diberikan x = y, maka d(x, y) = |x - y| = |y - y| = |0| = 0.

M3. d(x,y) = |x-y| = |y-x| = d(y,x) untuk setiap $x,y \in \mathbb{R}$.

M4. $d(x,y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x,z) + d(z,y)$ untuk setiap $x, y \text{ dan } z \in \mathbb{R}$.

Latihan Soal

1. Buktikan Fungsi

$$d(x,y) = \begin{cases} 1, \text{ jika } x \neq y \\ 0, \text{ jika } x = y \end{cases}$$

untuk setiap $x, y \in \mathbb{R}$ adalah metrik!

2. Diberikan $x = \mathbb{R}^2$. Didefinisikan fungsi $d: X \times X \to \mathbb{R}$ dengan

$$d(\bar{x}, \bar{y}) = maks\{|x_1 - y_1|, |x_2 - y_2|\}$$

untuk setiap $\bar{x}=(x_1,x_2), \bar{y}=(y_1,y_2)\in\mathbb{R}^2$. Buktikan bahwa fungsi d adalah metrik!

3. Diberikan fungsi d yang didefinisikan oleh $d(p,q) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$, dengan $p = (a_1, a_2)$ dan $q = (b_1, b_2)$ adalah titik dalam bidang \mathbb{R}^2 . Buktikan bahwa d adalah metrik pada \mathbb{R}^2 !

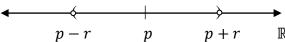
Persekitaran/neighbourhood

Definisi 16. Diberikan ruang metrik (X, d), titik $p \in X$ dan bilangan r > 0. Himpunan berbentuk $N_r(p) = \{x \in X | d(p, x) < r\}$ disebut persekitaran titik p dengan jari-jari r > 0. Titik p disebut pusat persekitaran $N_r(p)$.

Contoh

1. Jika $X = \mathbb{R}$ dan d(x, y) = |x - y|. Persekitaran titik $p \in \mathbb{R}$ adalah $N_r(p) = \{x \in X | |p - x| < r\} = (p - r, p + r)$

merupakan interval terbuka.



Latihan Soal

- 1. Jika $X = \mathbb{R}^2$ dan $d(\bar{x}, \bar{y}) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$, untuk setiap $\bar{x} = (x_1, x_2), \bar{y} = (y_1, y_2) \in \mathbb{R}^2$. Tentukan persekitaran dari titik $\bar{p} = (p_1, p_2) \in \mathbb{R}^2$!
- 2. Jika $X = \mathbb{R}^3$ dengan metrik

$$d(\bar{x}, \bar{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2},$$

untuk setiap $\bar{x}=(x_1,x_2,x_3), \bar{y}=(y_1,y_2,y_3)\in\mathbb{R}^3$. Tentukan persekitaran dari titik $\bar{p}=(p_1,p_2,p_3)\in\mathbb{R}^3$!

Titik Interior

Definisi 17. Diberikan ruang metrik (X, d) dan himpunan $H \subset X$. Titik $p \in H$ dikatakan titik interior dari H jika terdapat persekitaran titik p dengan radius r > 0 yaitu $N_r(p)$ sedemikian sehingga $N_r(p) \subset H$.

Contoh

- 1. Himpunan semua titik interior dari A = [a, b) adalah $A^{\circ} = (a, b)$.
- 2. B = (1,5)

$$B^{\circ} = (1,5)$$

3. H = [7,5]

$$H^{\circ} = (7,5)$$

Latihan Soal

- 1. Tentukan titik interior dari:
 - a. A = [4,5)
 - b. $B = \{5\} \cup (11,14)$

Titik Eksterior

Definisi 18. Diberikan ruang metrik (X,d) dan himpunan $H \subset X$. Titik $p \in H^c$ dikatakan titik eksterior dari H jika terdapat persekitaran $N_r(p)$ sedemikian sehingga $N_r(p) \subset H^c$. $(eks(H) = H^e = Int(H^c))$

Contoh

1. Misalkan H=(2,4), untuk $H^c=(-\infty,2]\cup[4,+\infty)$ maka $H^e=(-\infty,2)\cup(4,+\infty)$. Titik batas dari H=(2,4) adalah $H_b=\{2,4\}$.

Latihan Soal

- 1. Tentukan titik eksterior dan titik batas dari:
 - a. $N = (-\infty, 5)$
 - b. $A = (1,2] \cup \{3\}$

Titik batas

Definisi 19. Diberikan ruang metrik (X, d) dan himpunan $H \subset X$. Titik $p \in X$ dikatakan titik batas himpunan H jika setiap persekitaran titik p dengan radius r > 0 yaitu $N_r(p)$ maka $N_r(p) \setminus H \neq \emptyset$ dan $N_r(p) \setminus H^c \neq \emptyset$.

Himpunan semua titik batas H ditulis H_b , dan titik batas himpunan H yang merupakan anggota H dinamakan titik fountier.

Contoh

- 1. Misalkan himpunan $H \subset \mathbb{R}$ dengan H = [a, b). Tentukan titik batas himpunan H!
- 2. Tentukan titik batas dari D = (4,9)!

Jawab

- 1. $H_b = \{a, b\}.$
- 2. $D_b = \{4,9\}$

Latihan Soal

- 1. Tentukan titik batas dari:
 - a. E = [1,7)
 - b. $F = \{2\} \cup \{4,7\}$

Titik limit

Definisi 20. Diberikan ruang metrik (X, d) dan himpunan $H \subset X$. Titik $p \in X$ dikatakan titik limit himpunan H jika setiap persekitaran titik p dengan radius r > 0 yaitu $N_r(p)$ maka $\{N_r(p)\setminus \{p\}\}\cap H \neq \emptyset$.

Contoh

- 1. Misalkan himpunan $H \subset \mathbb{R}$ dengan $H = [a, b) \cup \{c\}$ dan c > b. Tentukan titik limitnya!
- 2. Tentukan titik limit dari A = (1,2)!

Jawab

- 1. H' = [a, b]
- 2. A' = [1,2]

Latihan Soal

- 1. Tentukan titik limit dari:
 - a. B = (2,5]
 - b. $C = \{1\} \cup [3,7]$

Teorema 5. Di dalam sebarang ruang metrik X, himpunan berhingga $H \subset X$ tidak mempunyai titik limit.

Penutup himpunan (closure)

Definisi 21. Diberikan ruang metrik X, $E \subset X$ dan E' himpunan semua titik limit himpunan E. Penutup himpunan (closure) E dinotasikan dengan \overline{E} adalah himpunan $\overline{E} = E \cup E'$.

Contoh

1. Misalkan $E \subset \mathbb{R}$ dan E = (a, b), tentukan closure E!

2. Tentukan closure dari A = (1,2]!

Jawab

- 1. E = (a, b), E' = [a, b] $\bar{E} = E \cup E' = (a, b) \cup [a, b] = [a, b].$
- 2. $\bar{A} = [1,2]$

Latihan Soal

- 1. Tentukan closure dari:
 - a. B = (3,4)
 - b. C = [5,7]
 - c. $D = \{5\} \cup (7,9)$

Himpunan terbuka dan tertutup

Definisi 22. Diberikan ruang metrik X dan G adalah himpunan bagian tak kosong dari X. Himpunan G dikatakan terbuka jika setiap anggotanya merupakan titik interior himpunan G.

Definisi 23. Diberikan ruang metrik X dan F adalah himpunan bagian tak kosong dari X. Himpunan F dikatakan tertutup jika setiap titik limitnya termuat di dalam himpunan F.

Contoh

- 1. Tentukan apakah himpunan berikut himpunan terbuka, tertutup, atau bukan keduanya:
 - a. A = (1,5)
 - b. B = [0,3]
 - c. C = (-1,10]